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In this paper, a mathematical model for a belt-driven system is proposed to
analyze vibration characteristics of driving units having belts, and free and
forced vibration analyses are carried out. The mathematical model for a belt-
driven system includes belts, pulleys, spindle and bearings. The material
properties of each belt and the equivalent sti�nesses supported by pulleys,
bearings and a spindle are calculated through experiments. By using Hamilton's
principle, four non-linear governing equations and twelve non-linear boundary
conditions are derived. To linearize and discretize the non-linear governing
equations and boundary conditions, the perturbation and Galerkin methods are
used. Also, the free vibration analyses for various parameters of a belt driven
system are made, including the tension of a belt, the length of a belt, the
material properties of belts, the belt velocity and the pulley mass. Forced
vibration analyses of the system are performed, and the dynamic responses for
the main parameters are analyzed for a belt driven system.

# 1999 Academic Press

1. INTRODUCTION

Previous studies [1±7] on belts are mostly con®ned to obtaining the natural
frequencies and modes by free vibration analysis, and are only concerned with
the vibration of the belt itself. In the 1980's, the results of studies considering the
boundary conditions of both ends of a belt as one-dimensional were presented
for the ®rst time, but the forced vibration analysis of a belt-driven system has
not been discussed. In an actual belt-driven system, a belt is supported by
pulleys, the pulleys suported by driving and driven shafts, and the shafts
supported by bearings. In this paper, the one-dimensional boundary condition of
a pulley supported system, which was presented by Mote [8, 9], is expanded into
two dimensions, and followed by an analysis of vibration transfer through a belt.
A mathematical model for the belt, bearing, and pulley in a belt-driven system is
also presented, and the free and forced vibrations of an actual belt-driven system
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are analyzed. The material properties of each belt and the equivalent stiffnesses
supported by pulleys, bearing and a spindle used in this paper are calculated
through experiments.
The contents of this paper are as follows. First, a two dimensional model of

support springs of a belt-driven system is presented, Hamilton's principle applied
to the model, and ®nally the non-linear equations of motions of the system are
obtained. Second, a numerical analysis program is developed to calculate the
natural frequencies and modes of a system. Third, the forced vibrations are
analyzed to obtain the dynamic responses for the main parameters of a system,
and the effects on the dynamic characteristics of a belt-driven system are
considered for the main parameters.

2. THEORETICAL ANALYSIS OF A BELT-DRIVEN SYSTEM

2.1. MODELLING OF A BELT-DRIVEN SYSTEM

The system modelled in this paper is represented by Figure 1. The parameters
used for modelling are: E Young's modulus, û, �̂u longitudinal displacement of the
belts, A cross-sectional area of the belts, ŵ, �̂w transverse displacement of the belts,
I second moment of area of the belts, yL , yR rotational displacement of the
pulleys, R0 initial static axial tension of the belts, ZL , ZR x, z direction
displacement of the pulleys, R initial axial tension of the belt at speed c, rL , rR
radius of the pulleys, c initial axial speed of the belts, ML , MR mass of the pulleys,
m mass per unit length of the belts, JL , JR rotational inertia of the pulleys, b
thickness of the belts, kL , kR support stiffness, L length of the belts, fj the jth
natural frequency, Feq inbalanced load of a motor, k̂ equivalent support stiffness.

2.2. DERIVATION OF NON-LINEAR EQUATIONS OF MOTION

The belts are assumed to be in plane motion. In this paper, the supporting
stiffness of pulleys is modelled as four linear springs added to two linear springs
in the gravitational direction (y direction) in order to expand the model of Mote
[8, 9] using only two linear springs in the longitudinal direction (x direction). As
the motions of a belt are generally modelled in two dimensions to complete the
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Figure 1. Theoretical model of a belt driven system.
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mathematical model of an actual belt-driven system, the motions of pulleys must
also be modelled two-dimensionally, in the x and y directions, because the
pulleys are supported by the driving and driven shafts, and these shafts are in
turn supported by the bearing. The equivalent stiffnesses in the x direction
supporting the pulleys are determined by the amplitudes of belt tensions, and
those in the y direction by the masses of the pulleys driving and driven shafts,
and the boundary conditions. One must consider the non-linearity of the bearing
stiffness [10] in the calculation of equivalent stiffnesses supporting the pulleys.
Also, the pulleys are modelled as concentrated masses, which exist at both ends,
and perform rotational and translational motions (x and z directions). The
motion of a belt at the upper and lower ends in contact with the pulleys is
con®ned only to the rotational motion without the translational motion.
Nine assumptions are made in analyzing the proposed model. (1) Each belt is

®xed to the pulleys as pin joints. (2) Each belt is a uniform and elastically ranged
Euler±Bernoulli beam. (3) The pulleys are connected to the linear springs in the
x and y directions. (4) All the values to be analyzed are obtained under the
conditions of constant tension and velocity of a belt. (5) There is no slip between
the pulleys and belts. (6) All the motions are constrained to the plane. (7) The
de¯ection in the x direction is smaller than that in the y direction. (8) All the
variables are only functions of x and t. (9) The relation between the tension R
and initial tension R0 when the feeding velocity is c, is given by

R � R0 �mc2=�1� k̂L=�2EA��: �1�
By applying Hamilton's principle to derive the equations of motion, and in

Figure 1, expressing the relation between the strain and de¯ection of a principal
belt as equation (2) by the sixth and seventh assumptions above.

�̂exx � �̂ux � �̂w2
,x=2� R=EAÿ y �̂w,xx, êxx � û,x � ŵ2

,x=2� R=EAÿ yŵ,xx: �2�
When small vibrations of a belt occur, the vibration response of the belt can be
exactly expressed with linear equations and boundary conditions, but as the
amplitude of the belt vibration increases, the effects of the non-linearity also
increase. The strain energy of the principal belt is expressed as:

U1 � 1
2

�L
0

�
A

E�̂e2xx dA dx: �3�

Using the eighth assumption, equation (2) is inserted into equation (3) to
produce the potential energy of the principal belt.

U1 � 1
2

�L
0

EA�̂u2,x � EA�̂u,x �̂w2
,x �

EA �̂w4
,x

4
� R4

EA
� EI �̂w2

,xx � 2R�̂u,x � R �̂w2
,x

 !
dx: �4�

By using equation (4), the strain energy of the secodary belt is obtained as:

U2 � 1
2

�L
0

EAû2,x � EAû,xŵ
2
,x �

EAŵ4
,x

4
� R4

EA
� EIŵ2

,xx � 2Rû,x � Rŵ2
,x

 !
dx: �5�
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The potential energy which is saved by the supporting pulley stiffnesses is given
by:

U3 � 1
2kLx ZLx �

2R

kLx

� �2

�1
2kRx ZLx ÿ

2R

kRx

� �2

�1
2kLyZ

2
Ly � 1

2kRyZ
2
Ry: �6�

The total potential energy of the system is expressed as

U � U1 �U2 �U3: �7�
The kinetic energy of a belt-driven system assuming plane motion is:

T � 1
2

�L
0

m c� dû

dt

� �2

� dŵ

dt

� �2
" #

dx� 1
2

�L
0

m ÿc� d�̂u

dt

� �2

� d �̂w

dt

� �2
" #

dx

� 1
2Ĵ

dyL
dt
� c

rL

� �2

�1
2ĴR

dyR
dt
� c

rR

� �2

� 1
2M̂L

dZ2Lx
dt
� dZ2Ly

dt

 !
� 1

2M̂R
dZ2Lx
dt
� dZ2Ly

dt

 !
: �8�

In equation (8), the ®rst and the second terms are the kinetic energy of the belt,
and the remaining terms are the rotational and translational kinetic energies of
the pulleys. The sum of the work generated by the dynamic load of the motor
system, and the constant moments M̂M̂R, M̂M̂L at both ends of the belt is:

W � fxZLx � fyZLy � M̂M̂Rŵ,x�L, t� ÿ M̂M̂Lŵ,x�0, t�

ÿ M̂M̂R �̂w,x�L, t� � M̂M̂L �̂w,x�0, t�: �9�
In order to calculate the potential energy for the pulleys and supporting stiffness,
one must impose conditions of geometric compatibility at both ends of the belt
for the rotational and translational motions of pulleys. The geometric
compatibility for the rotational and translational motions of pulleys is:

yL�t� � �û�0, t� ÿ �̂u�0, t��=2rL, yR�t� � �û�L, t� ÿ �̂u�L, t��=2rR,
ZLx � �û�0, t� � �̂u�0, t��=2, ZRx � �û�L, t� � �̂u�L, t��=2,
ZLy � �ŵ�0, t� � �̂w�0, t��=2, ZRy � �ŵ�L, t� � �̂w�L, t��=2: �10�

By using Hamilton's principle, one can derive equation (11) (a full expansion of
equation (11) is given in the Appendix) by combining the above equations.

dH �
�t2
t1

�dTÿ dU� dW� dt: �11�

The next procedure is the non-dimensionalization of the governing equations
and boundary conditions from equation (11) so that one can derive the four
dimensionless governing equations ((12)±(15)) and twelve boundary conditions
(equations (16)±(25)).
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For 0E xE 1, t> 0

�uÿ 2s _u 0 ÿ Fu 0 0 ÿ gw 0 0w 0 � 0, ��uÿ 2s _�u 0 ÿ F�u 0 0 ÿ g�w 0 0 �w 0 � 0, �12, 13�

�w� 2s _w 0 ÿCw 0 0 � w 0 0 0 0 ÿ g�u 0 0w 0 � u 0w 0 0� ÿ 1�5aw 02w 0 0 � 0, �14�

��w� 2s _�w 0 ÿC�w 0 0 � �w 0 0 0 0 ÿ g��u 0 0 �w 0 � �u 0 �w 0 0� ÿ 1�5a�w 02 �w 0 0 � 0, �15�

�JL=2r2L���u�0, t� ÿ ��u�0, t�� ÿ b�u 0�0, t� ÿ �u 0�0, t��

ÿ�g=2��w 02�0, t� ÿ �w
02�0, t�� � 0, �16�

�ML=2���u�0, t� � ��u�0, t�� � �kLx=2��u�0, t� � �u�0, t��

ÿb�u 0�0, t� � �u 0�0, t�� ÿ �g=2��w 02�0, t� � �w
02�0, t�� � �fx, �17�

�JR=2r2R���u�1, t� ÿ�u�u�1, t�� � b�u 0�1, t� ÿ �u 0�1, t��

��g=2��w 02�1, t� ÿ �w
02�1, t�� � 0, �18�

�MR=2���u�1, t� � ��u�1, t�� � �kRx=2��u�1, t� � �u�1, t��

�b�u 0�1, t� � �u 0�1, t�� � �g=2��w 02�1, t� � �w
02�1, t�� � 0, �19�

�w 0 0 0�0, t� ÿ �w 0 0 0�0, t�� ÿ g�u 0�0, t�w 0�0, t� ÿ �u 0�0, t��w 0�0, t��

ÿ�a=2��w 03�0, t� ÿ �w
03�0, t�� ÿ Rn�w 0�0, t� ÿ �w 0�0 t�� � 0, �20�

�ML=2���w�0, t� � ��w�0, t�� � �kLy=2��w�0, t� � �w�0, t��

ÿ g�u 0�0, t�w 0�0, t� � �u 0�0, t��w 0�0, t�� ÿ �a=2��w 03�0, t� � �w
03�0, t��

� �w 0 0 0�0, t� � �w 0 0 0�0, t�� ÿ Rn�w 0�0, t� � �w 0�0, t�� � �fy, �21�

�w 0 0 0�1, t� ÿ �w 0 0 0�1, t�� ÿ g�u 0�1, t�w 0�1, t� ÿ �u 0�1, t��w 0�1, t��

ÿ �a=2��w 03�1, t� ÿ �w
03�1, t�� ÿ Rn�w 0�1, t� ÿ �w 0�1, t�� � 0, �22�

where

_u � @u=@t, u 0 � @u=@x, _wÿ @w=@t, w 0 � @w=@x



728 S. K. KIM AND J. M. LEE

�MR=2���w�1, t� � ��w�1, t�� � �kRy=2��w�1, t� � �w�1, t��
ÿ �w 0 0 0�1, t� � �w 0 0 0�1, t�� � g�u 0�1, t�w 0�1, t� � �u 0�1, t��w 0�1, t��

� �a=2��w 03�1, t� � �w
03�1, t�� � Rn�w 0�1, t� � �w 0�1, t�� � 0, �23�

w 0 0�0, t� � �w 0 0�0, t� � 0, w 0 0�1, t� � �w 0 0�1, t� � 0 �24, 25�

2.3. LINEARIZATION

Non-linear terms exist in the derived governing equations and boundary
conditions (12)±(25) for the mathematical analysis of a belt-driven system. These
non-linear governing equations and boundary conditions are linearized by
applying the perturbation method from reference [11], so that the non-linear
variables u, �u, w, �w become the summation of two linear variables.

u�x, t� � u��x� � u�x, t�, �u�x, t� � �u��x� � �u�x, t�,
w�x, t� � w��x� � w�x, t�, �w�x, t� � �w��x� � �w�x, t�: �26�

By inserting equation (26) into equations (12)±(25) and removing non-linear
terms, the linear governing equations and boundary conditions can be derived
(see the Appendix).

2.4. DISCRETIZATION

Generally, the exact solution of the linear governing equations and boundary
conditions cannot be calculated, so one discretizes them by using the weak form
of Galerkin [12]. Equation (27) expresses the governing equations and boundary
conditions as the operator, and equation (28) produces the residual terms.

Lm�u, w, �u, �w� � 0, m � 1±4, Bn�u, w, �u, �w� � 0, n � 1±8, �27�

edm � Lm�u, w, �u, �w� � 0, m � 1±4, ebn � Bn�u, w, �u, �w� � 0, n � 1±8, �28�
Separation of variables is performed on the variables u, �u, w, �w, to give

u�x, t� �
XN
i�1

Ui�x�pi�t�, �u�x, t� �
XN
i�1

�Ui�x��pi�t�,

w�x, t� �
XN
i�1

Wi�x�qi�t�, �w�x, t� �
XN
i�1

�Wi�x��qi�t�: �29�

Here, pi�t�, qi�t�, �pi�t�, �qi�t� are the general co-ordinates. The assumption for
the functions Ui�x�, Wi�x�, �Ui�x�, �Wi�x� is expressed by:

Ui�x�, �Ui�x�, admissible function; Wi�x�, �Wi�x�, comparison function: �30�
In particular, the assumption made for the function Ui(x) determines the
admissible function of a beam at both free ends, because both ends of a belt
behave freely in the x direction, and the assumption for Wi�x� determines the
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comparison function, because both ends of a belt behave freely in the
gravitational direction (y direction), and the moments become zero at both ends
of a belt. The discretized weak form of a belt-driven system by the Galerkin
method can be stated as:

hed1, uj�x�i �
X4
n�1
�ebnUbj� � 0, hed2, �Uj�x�i �

X4
n�1
�ebn �Ubj� � 0,

hed3, wj�x�i �
X8
n�5
�ebnUbj� � 0, hed4, �wj�x�i �

X8
n�5
�ebn �Wbj� � 0: �31�

In equation (31), h i is the inner product without the weighting at 0< x< 1 and
Ub and �Ub are the values of Uj�x�, �Uj�x� to be calculated at x=0 and x=1. The
assumed functions are inserted into equation (31), so that the ®nal equation of
motion becomes

�M�f�y�t�g � �G�f _y�t�g � �K�fy�t�g � fFg: �32�
Here, the shapes and elements of each matrix are:

�M� �
M11 M12 0 0
M21 M22 0 0
0 0 M33 M34

0 0 M43 M44

2664
3775, �G� �

G11 0 0 0
0 G22 0 0
0 0 G33 0
0 0 0 G44

2664
3775, �33, 34�

�K� �
K11 K12 K13 0
K21 K22 0 K24

K31 0 K33 K34

0 K42 K43 K44

2664
3775, fyg �

p
�p
q
�q

8>><>>:
9>>=>>;, fFg �

� �fx=2�6Uj�0�
� �fx=2�6�Uj�0�
� �fy=2�6Wj�0�
� �fy=2�6 �Wj�0�

8>><>>:
9>>=>>;:

�35±37�

3. NUMERICAL ANALYSIS OF A BELT-DRIVEN SYSTEM

After development of the program of numerical analysis for the equations of
motions of a belt-driven system using the previously derived equations, some
results of the numerical analysis are reported. First, the free vibration analysis of
a belt-driven system, was performed to obtain the natural frequencies and
modes. Second, the forced vibration analysis was performed by applying an
external load in order to calculate the dynamic responses of the main parameters
representing the characteristics of the system. All data to be used for these
analyses, which were the shapes and material properties of belts, the shapes and
supporting stiffnesses of pulleys, and so on, were obtained through the precision
dynamic power transfer system in the Institute of Advanced Machinery and
Design of Seoul National University as shown in Figure 2. All data values are
listed in Tables 1 and 2. Generally, the shaft is supported by the bearing, and the
following non-linear experimental equation (see reference [10]) was used to
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calculate the equivalent stiffness of a bearing.

Stiff � dFr=ddr � n�1=x�ZKdnÿ1r cos a, �38�
where Z is number of balls, dr the radial displacement, n is a constant (1�5 in the
case of a ball bearing), a the contact angle (for the bearing used 30�), K the
load±de¯ection constant (130 000 in the case of a ball bearing), x is a constant
(4�37 in the case of a ball bearing), Fr is the radial load.
The stiffness of a bearing is related not only to the material property of a

bearing, but also to the displacement and external load. Hence the external load
on the bearing was calculated and the equivalent stiffness was predicted.

3.1. ANALYSES OF FREE VIBRATION

The free vibration analysis of the system through a written program to
calculate eigenvalues of the non-symmetric matrix was performed, and Table 3
shows the natural frequencies of each belt. From the results of the analysis,
similar values for each pair of natural frequencies were obtained. It means that
these results are in good agreement with those presented by Mote even though
the support springs of the pulleys were expanded from one dimension (x
direction) to two dimensions (x and y directions). These phenomena can be
attributed to the effects of the boundary condition not having been considered in
the previous studies, namely, the longitudinal displacements u and �u, and the
transverse displacements w and �w that characterize the pulley rotation and
translation in each mode. The rotation of the pulleys is determined by the
differences between u and �u at the boundaries, and the translations of the pulleys
are determined by the sums of u and �u, and w and �w at the boundaries as can be
seen in equation (10). It is clear that the longitudinal motions u and �u, and the
transverse motions w and �w oscillate the pulleys, and thus couple the motions of
the belts as in the results of Mote [9]. As the difference of a pair of natural
frequencies becomes smaller, the effect of coupling decreases [9]. Figures 3, 4 and
5 show the ®rst, second and third mode shapes through using the poly-¯ex belt,
and calculation conditions for the analysis are presented in Tables 1 and 2.

AC servomotor
(BSS-400)

Poly-flex belt
(Gate Co.,USA)

Sub-spindle

Magnetic coupling

4B Block-head universal air bearing
Spindle(PI Co.)

Controller(Waco Co.)ASE-50

Figure 2. Schematic diagram of precision dynamic drive system.
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The results are as follows. Firstly, from the free vibration analyses of the
system for various belt velocities, as the belt velocity increases, the natural
frequencies decrease more or less. Secondly, from the analyses for the various
belt lengths, the natural frequencies greatly decrease as the length of a belt
becomes longer. Thirdly, from the analyses for various belt tensions, the natural
frequencies increase hugely as the belt tension increases. Fourthly, as the elastic
modulus of a belt increases, the natural frequencies increase. Finally, one
observes that as the pulley mass is increased gradually, the natural frequencies
change very little. The increase in pulley mass has little effect on the natural
frequencies because the supporting stiffness of a pulley by the bearing is huge.
The tension, the elastic modulus and the length of a belt have the main effects
on the natural frequencies. Tables 4 and 5 show the results of free vibration
analyses for the various parameters of the belt-driven system.

3.2. ANALYSES OF FORCED VIBRATION

In equation (32), the right term was de®ned as the external load resulting from
the dynamic load by the geometric eccentricity of a motor system. One assumed
that the inbalanced dynamic load was a sinusoidal function. In order to analyse
the forced vibration, the inbalanced dynamic load was inserted in the x and z
directions into the external load of equation (32). The dynamic load in the x

TABLE 1

Characteristics of belts

Belt typez���������������������������������������������������}|���������������������������������������������������{
Items Poly-flex Timing belt V-belt

Young's modulus (N/m2) 1�5433E9 1�350E9 7�4511E8
Width (mm) 4�25 13�0 9�3
Thickness (mm) 5�0 4�0 8�5
Length (mm) 400�0 400�0 400�0
Initial tension (N) 300�0 300�0 300�0

TABLE 2

Characteristics of pulleys

Pulley items (steel) Values

Width (mm) 13�5
Radius of left pulley (mm) 25�0
Radius of right pulley (mm) 50�0
Mass density (kg/m3) 7�8E3
x direction support stiffness of left pulley (N/m) 7�91E8
x direction support stiffness of right pulley (N/m) 9�59E8
z direction support stiffness of left pulley (N/m) 1�21E7
y direction support stiffness of right pulley (N/m) 5�96E7
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direction was de®ned as the sine function, and that in the y direction as the
cosine function. To calculate the dynamic displacements for the dynamic load,
the impedance method was applied to the program of forced vibration analysis,
and the data used in the forced vibration analysis are presented in Table 6.
Table 7 and Figure 6 show the results of dynamic analyses of a belt-driven

system using the timing belt and a poly-¯ex belt, and the calculation conditions

TABLE 3

Results of modal analysis

Natural frequency (Hz)z������������������������������������������}|������������������������������������������{
Mode no. Poly-flex Timing belt V-belt

1 13�66 11�05 14�26
2 20�44 13�76 25�26
3 20�57 13�93 26�13
4 35�43 25�88 43�32
5 40�36 29�47 47�47
6 51�43 40�55 61�54
7 51�93 40�98 62�14
8 69�98 59�72 81�52
9 76�33 64�22 95�24
10 89�31 79�47 117�21
11 90�31 80�14 117�43
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Figure 3. First mode shape of poly-¯ex belts ( f1=13�66 Hz): (a) x directional mode shape of
the primary belt; (b) x directional mode shape of the secondary belt; (c) y directional mode shape
of the primary belt; (d) y directional mode shape of the secondary belt. The properties of the belt
and the support stiffnesses are listed in Tables 1 and 2.
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Figure 4. Second mode shape of poly-¯ex belts ( f2=20�44 Hz): (a) x directional mode shape
of the primary belt; (b) x directional mode shape of the secondary belt; (c) y directional mode
shape of the primary belt; (d) y directional mode shape of the secondary belt. The properties of
the belt and the support stiffnesses are listed in Tables 1 and 2.
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Figure 5. Third mode shape of poly-¯ex belts ( f3=20�57 Hz): (a) x directional mode shape of
the primary belt; (b) x directional mode shape of the secondary belt; (c) y directional mode shape
of the primary belt; (d) y directional mode shape of the secondary belt. The properties of the belt
and the support stiffnesses are listed in Tables 1 and 2.
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for the analyses are presented in Tables 1, 2 and 6. The displacements were
calculated in the x and y directions of the right pulley, and at the excited
position, namely the left pulley. The results of the dynamic analysis are as
follows. Firstly, the dynamic displacements in the x direction using a timing belt
are smaller than those using a poly-¯ex belt at the excited position. It means that
the total stiffness of a system using the timing belt is larger than that of a system
using the poly-¯ex under the same supporting pulley stiffness. Secondly, the
dynamic displacements in the x direction of the right pulley using the timing belt
are smaller than those using the poly-¯ex belt, but the dynamic displacements in
the y direction of the right pulley have contrary results.

TABLE 5

Analysis of free vibrations of systems for the various belt elastic moduli

glastic moduli (N/m2)z������������������������������������������������������}|������������������������������������������������������{
mode no. 1�54E9 5�40E9 7�72E9 1�54E10

1 13�66 25�08 29�80 41�97
2 20�44 37�53 44�18 61�73
3 20�57 37�70 44�36 61�98
4 35�43 64�09 75�76 106�17
5 40�36 75�92 89�99 126�31
6 51�43 90�73 107�27 138�56
7 51�93 91�54 108�13 150�23
8 69�98 117�58 138�53 151�33
9 76�33 128�87 138�99 194�37
10 89�31 138�57 151�80 211�82
11 90�31 145�49 171�49 239�12

TABLE 4

Analysis of free vibrations of systems for the various belt tensions

Tension (N)z���������������������������������������������������}|���������������������������������������������������{
Mode no. 200�0 300�0 600�0 1000�0

1 10�79 13�66 19�24 24�50
2 14�41 20�44 29�44 36�73
3 14�59 20�57 29�58 36�89
4 26�59 35�43 49�94 62�67
5 30�29 40�36 58�42 74�20
6 40�99 51�43 70�72 88�74
7 41�45 51�93 71�46 89�52
8 59�36 69�98 91�99 114�69
9 64�21 76�33 101�52 125�01
10 78�35 89�31 114�78 126�19
11 79�12 90�31 115�63 138�57
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Another analysis of forced vibration was performed using the poly-¯ex belt
for the various excited forces, and the analytical methods were: belt tension was
300 N, and the excited frequency was 378�0 rad/s (3600 r.p.m.). Table 8 shows
the results of the analysis, and as the external excited forces increase, both
displacements in the x and y directions of the pulleys increase.

4. CONCLUSIONS

In this paper, a two-dimensional analytical model of support springs by
pulleys has been presented, to expand the model by Mote, in order to perform
the exact modelling of a belt-driven system. The supporting stiffnesses in two
dimensions of pulleys to be considered in the proposed model for an actual belt-
driven system was calculated, and the the free and forced vibration of systems
analyzed to determine the effects of vibration isolation through the belts. The
analytical results of the mathematical model for a belt-driven system are listed as
follows.
(1) The two-dimensional mathematical model of support springs by pulleys for

a belt-driven system have been presented, and the four non-linear governing
equations of motion and twelve non-linear boundary conditions were derived.
(2) The perburbation method was applied to the derived equations and then

linearized. The discretization procedure using Galerkin's weak forms was
performed, in order to complete the equations of motion of a belt-driven system.

TABLE 6

Data to be used in dynamic analysis

Items Data values

fx= fy=meo2 (N) 4�1
Tension R (N) 300�0
Time step 5000
Dt (s) 6�28E-7

TABLE 7

Results of dynamic analysis I(�m)

Timing belt Poly-flex beltz����������������}|����������������{ z�������������������}|�������������������{
Calculated
position x z x z

Left pulley 2�013 2�16 ÿ16�36 ÿ0�1575
Right pulley ÿ0�03535 ÿ2�16 ÿ0�8805 0�1575
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(3) In order to calculate the supporting stiffness of pulleys, the bearing
stiffness to support the motor spindle was used in the driving part, and the
bearing stiffness to support the main spindle was used in the driven part. From
the non-linear relation between the equivalent stiffness and the load applied to
the bearing, a program was developed to calculate the equivalent stiffness for the
loads applied to the bearings.
(4) By using the derived governing equations and boundary conditions, the

free vibration analyses of an actual belt-driven system was performed. From the

TABLE 8

Results of dynamic analysis II (�m)

Feq (N)z��������������������������������������������������������������}|��������������������������������������������������������������{
1�0 5�0 10�0z����������������}|����������������{ z����������������}|����������������{ z����������������}|����������������{

Calculated position x z x z x z

Left pulley ÿ7�965 ÿ0�195 ÿ39�83 ÿ0�975 ÿ79�65 ÿ1�95
Right pulley ÿ0�68 0�195 ÿ3�406 0�975 ÿ6�811 1�95
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Figure 6. Dynamic displacements of the poly-¯ex belt (Ð) and the timing belt (- - -): (a) �u of
the primary belt; (b) u of the secondary belt; (c) �w of the primary belt; (d) w of the secondary
belt. The properties of the belt and the support stiffnesses are listed in Tables 1 and 2. Table 6
contains other relevant data.
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results of these analyses, the natural frequencies and modes of system were
obtained, con®rming the couplings between the belt and the boundary
conditions through the fact that each pair of the natural frequencies came out as
shown in Tables 3±5. These phenomena were a result of considering the effects
of the boundary conditions, namely, the longitudinal displacements, and the
transverse displacements that characterize the pulley rotation and translation in
each mode. It is clear that the longitudinal motions and the transverse motions
oscillate the pulleys, and thus couple the motions of the belts as reported in
Mote's [9] study.
(5) Free vibration analyses were performed for varying belt lengths, belt

tensions, belt elastic moduli, belt velocities and pulley masses, con®rming that
the main parameters affecting the natural frequencies of the system were the
length, the tension and the elastic modulus.
(6) Forced vibration analyses were performed for two belt types, and from the

results of these analyses, one found that the effects of vibrational isolation of a
poly-¯ex belt were larger than those of a timing belt.
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APPENDIX

A1. Expansion of dH � � t2t1 �dTÿ dU� dW� dt (11)

dH �
�t2
t1

� �L
0

�fÿmû,tt � �EAÿmc2�û,xx ÿ 2mcû,xt � EAŵ,xŵ,xxg dû

� fÿm�̂u,tt � �EAÿmc2��̂u,xx � 2mc�̂u,xt � EA �̂w,x �̂w,xxg d�̂u

� fÿmŵ,tt � EA�û,xxŵ,xû,xŵ,xx� � 1�5EAŵ2
,xŵ,xx ÿ EIŵ,xxxx

� �Rÿmc2�ŵ,xx ÿ 2mcŵ,xtg dŵ
� fÿm �̂w,tt � EA��̂u,xx �̂w,x � �̂u,x �̂w,xx�

� 1�5EA �̂w2
,x �̂w,xx ÿ EI �̂w,xxxx � �Rÿmc2� �̂w,xx � 2mc �̂w,xtg d �̂w

�
dx

� fÿEAû,x�L, t� ÿ �EA=2�ŵ2
,x�L, t� ÿ �ĴR=4r2R��û,tt�L, t� ÿ �̂u,tt�L, t��

ÿ �M̂R=4��û,tt�L, t� � �̂u,tt�L, t�� ÿ �k̂Rx=4��û,tt�L, t� � �̂u,tt�L, t��g dû�L, t�

ÿ fÿEAû,x�0, t� ÿ �EA=2�ŵ2
,x�0, t� � �ĴL=4r2L��û,tt�0, t� ÿ �̂u,tt�0, t��

� �M̂L=4��û,tt�0, t� � �̂u,tt�0, t��

� �k̂Lx=4��û,tt�0, t� � �̂u,tt�0, t�� ÿ fx=2g dû�0, t�

� fÿEA�̂u,x�L, t� ÿ �EA=2� �̂w2
,x�L, t� � �ĴR=4r2R��û,tt�L, t� ÿ �̂u,tt�L, t��

ÿ �M̂R=4��û,tt�L, t� � �̂u,tt�L, t�� ÿ �k̂Rx=4��û,tt�L, t� � �̂u,tt�L, t��g d�̂u�L, t�

ÿ fÿEA�̂u,x�0, t� ÿ �EA=2� �̂w2
,x�0, t� ÿ �ĴL=4r2L��û,tt�0, t� ÿ �̂u,tt�0, t��

� �M̂L=4��û,tt�0, t� � �̂u,tt�0, t��

� �k̂Lx=4��û,tt�0, t� � �̂u,tt�0, t�� ÿ fx=2g d�̂u�0, t�
� fÿEAû,x�L, t�ŵ,x�L, t� ÿ �EA=2�ŵ3

,x�L, t� � EIŵ,xxx�L, t� ÿ Rŵ,x�L, t�

ÿ �M̂R=4��ŵ,xx�L, t� � �̂w,xx�L, t�� ÿ �k̂Ry=4��ŵ,xx�L, t� � �̂w,xx�L, t��g dŵ�L, t�
ÿ fÿEAû,x�0, t�ŵ,x�0, t� ÿ �EA=2�ŵ3

,x�0, t� � EIŵ,xxx�0, t� ÿ Rŵ,x�0, t�

� �M̂L=4��ŵ,xx�0, t� � �̂w,xx�0, t�� � �k̂Ly=4��ŵ,xx�0, t� � �̂w,xx�0, t��g dŵ�0, t�
� fÿEA�̂u,x�L, t� �̂w,x�L, t� ÿ �EA=2� �̂w3

,x�L, t� � EI �̂w,xxx�L, t� ÿ R �̂w,x�L, t�
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ÿ �M̂L=4��ŵ,xx�L, t� � �̂w,xx�L, t�� ÿ �k̂Ly=4��ŵ,xx�L, t� � �̂w,xx�L, t��g d �̂w�L, t�
ÿ fÿEA�̂u,x�0, t� �̂w,x�0, t� ÿ �EA=2� �̂w3

,x�0, t� � EI �̂w,xxx�0, t� ÿ R �̂w,x�0, t�

� �M̂L=4��ŵ,xx�0, t� � �̂w,xx�0, t��

� �k̂Ly=4��ŵ,xx�0, t� � �̂w,xx�0, t�� ÿ fy=2g d �̂w�0, t�

ÿ fM̂M̂L ÿ EIŵ,xx�0, t�g dŵ,x�0, t� � fM̂M̂R ÿ EIŵ,xx�L, t�g dŵ,x�L, t�

� fM̂M̂L � EI �̂w,xx�0, t�g d �̂w,x�0, t� � fM̂M̂R ÿ EI �̂w,xx�L, t�g d �̂w,x�L, t�� � 0:

By inserting Equation (26) into the equations (12)±(25) to eliminate the non-
linear terms, four linear governing equations and twelve boundary conditions are
derived.

u�x, t� � u��x� � u�x, t�, �u�x, t� � �u��x� � �u�x, t�,

w�x, t� � w��x� � w�x, t�, �w�x, t� � �w��x� � �w�x, t�,

Governing equation

�u� 2s _u 0 � Fu 0 0 ÿ g�w� 0w 0� 0 � 0, �u�uÿ 2s�u�u 0 ÿ F�u 0 0 ÿ g��w� 0 �w 0� 0 � 0,

�w� 2s _w 0 ÿCw 0 0 � w 0 0 0 0 ÿ g�w� 0u 0 � u� 0w 0�, ÿ 1�5a�w�2w 0 0 � 2w� 0w� 0 0w 0� � 0,

�w�wÿ 2s�w�w 0 ÿC�w 0 0 � �w 0 0 0 0 ÿ g��w� 0�u 0 � �u� 0 �w 0�, ÿ 1�5a��w� 02 �w 0 0 � 2�w� 0 �w� 0 0 �w 0� � 0:

Boundary conditions

�JL=2r2L���u�0, t� ÿ�u�u�0, t��
ÿ b�u 0�0, t� ÿ �u 0�0, t�� ÿ g�w� 0�0�w 0�0, t� ÿ �w� 0�0��w 0�0, t�� � 0,

�ML=2���u�0, t� ��u�u�0, t�� � �kLx=2��u�0, t� � �u�0, t��
ÿ b�u 0�0, t� � �u 0�0, t�� ÿ g�w� 0�0�w 0�0, t� � �w� 0�0��w 0�0, t�� � �fx,

�JR=2r2R���u�1, t� ÿ�u�u�1, t�� � b�u 0�1, t� ÿ �u 0�1, t��
� g�w� 0�1�w 0�1, t� � �w� 0�1��w 0�1, t�� � 0,

�MR=2���u�1, t� ��u�u�1, t�� � �kRx=2��u�1, t� � �u�1, t��
� b�u 0�1, t� � �u 0�1, t�� � g�w� 0�1�w 0�1, t� � �w� 0�1��w 0�1, t�� � 0,
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�w 0 0 0�0, t� ÿ �w 0 0 0�0, t�� ÿ Rn�w 0�0, t� ÿ �w 0�0, t��

ÿ 3
2a�w� 0

2�0�w 0�0, t� ÿ �w� 02�0��w 0�0, t��
ÿ g�u� 0�0�w 0�0, t� � w� 0�0�u 0�0, t� ÿ �u� 0�0��w 0�0, t� ÿ �w� 0�0��u 0�0, t�� � 0

�ML=2���w�0, t� ��w�w�0, t�� � �kLx=2��w�0, t� � �w�0, t��
� �w 0 0 0�0, t� � �w 0 0 0�0, t�� ÿ Rn�w 0�0, t� � �w 0�0, t��

ÿ 3
2a�w� 0

2�0�w 0�0, t� � �w� 02�0��w 0�0, t��
ÿ g�u� 0�0�w 0�0, t� � w� 0�0�u 0�0, t�
� �u� 0�0��w 0�0, t� � �w� 0�0��u 0�0, t�� � �fz,

�w 0 0 0�1, t� ÿ �w 0 0 0�1, t�� ÿ Rn�w 0�1, t� ÿ �w 0�1, t��

ÿ 3
2a�w� 0

2�1�w 0�1, t� ÿ �w� 02�1��w 0�1, t��
ÿ g�u� 0�1�w 0�1, t� � w� 0�1�u 0�1, t� ÿ �u� 0�1��w 0�1, t� ÿ �w� 0�1��u�1, t�� � 0,

�MR=2���w�1, t� ��w�w�1, t�� � �kRz=2��w�1, t� � �w�1, t��
ÿ �w 0 0 0�1, t� � �w 0 0 0�1, t�� � Rn�w 0�1, t� � �w 0�1, t��

ÿ 3
2a�w� 0

2�1�w 0�1, t� � �w� 02�1��w 0�1, t��
� g�u� 0�1�w 0�1, t� � w� 0�1�u 0�1, t�
� �u� 0�1��w 0�1, t� � �w� 0�1��u 0�1, t�� � 0,

w 0 0�0, t� � �w 0 0�0, t� � 0, w 0 0�1, t� � �w 0 0�1, t� � 0:
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